On moist air and dew points

See our papers:

Nihad E. Daidzic Ph.D., Sc.D.AAR Aerospace Consulting, LLC

Abstract

The basic thermodynamic theories of terrestrial dry and moist air are summarized. Atmospheric water vapor-liquid, vapor-ice and liquid-ice phase transitions using Clapeyron and Clausius-Clapeyron equations are presented in a coherent and clear way. Basic theory and several practical expressions to compute dew points and/or relative humidity are presented. Density altitude corrected for humidity can be easily computed from presented moist air thermodynamic relationships. Understanding thermodynamics and dynamics of atmospheric moist air and phase transitions is of fundamental importance for safety and economy of flight operations. Moist air plays significant role not only in atmospheric and cloud physics, but also for aircraft performance computations, human life support and environmental control systems.

On moist air and dew points

See our papers:

On moist air and dew points

Nihad E. Daidzic Ph.D., Sc.D.AAR Aerospace Consulting, LLC

Abstract

The basic thermodynamic theories of terrestrial dry and moist air are summarized. Atmospheric water vapor-liquid, vapor-ice and liquid-ice phase transitions using Clapeyron and Clausius-Clapeyron equations are presented in a coherent and clear way. Basic theory and several practical expressions to compute dew points and/or relative humidity are presented. Density altitude corrected for humidity can be easily computed from presented moist air thermodynamic relationships. Understanding thermodynamics and dynamics of atmospheric moist air and phase transitions is of fundamental importance for safety and economy of flight operations. Moist air plays significant role not only in atmospheric and cloud physics, but also for aircraft performance computations, human life support and environmental control systems.



The Boötes void (or the Great Nothing) is an enormous, approximately spherical region of space, containing very few galaxies. It is located in the vicinity of the constellation Boötes, hence its name. Its center is located at approximately right ascension 14h 50m and declination 46°

Hercules–Corona Borealis Great Wall or the Great Wall is the largest-known structure in the observable universe, measuring approximately 10 billion light years in length (for perspective, the observable universe is about 93 billion light years in diameter). This massive superstructure is a region of the sky seen in the data set mapping of gamma-ray bursts (GRBs) that has been found to have an unusually higher concentration of similarly distanced GRBs than the expected average distribution. It was discovered in early November 2013 by a team of American and Hungarian astronomers led by István Horváth, Jon Hakkila and Zsolt Bagoly while analyzing data from the Swift Gamma-Ray Burst Mission, together with other data from ground-based telescopes. It is the largest-known formation in the universe, exceeding the size of the prior Huge-LQG by about two times.